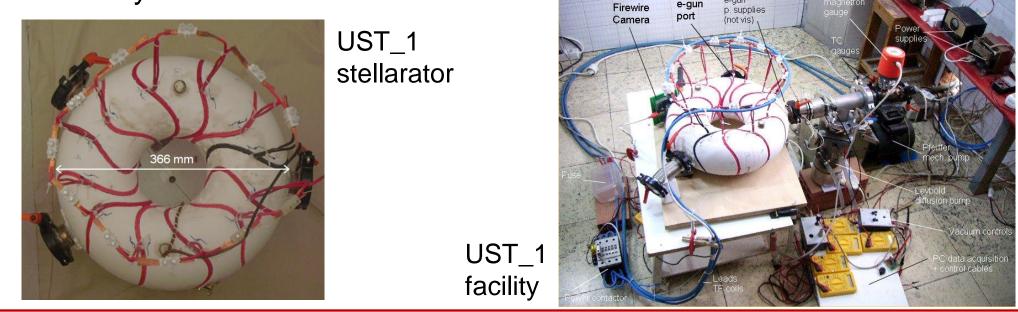
Status of UST_2 stellarator construction

Vicente M. Queral Mas

Seminar given in National Fusion Laboratory CIEMAT Madrid, Spain 31 May 2013



- Background. Introduction
- Experimental validation of engineering concepts
- Assessment of different alternatives
- Current reference design and future work

Background

The present work is the continuation of the UST_1 one.

UST_1 (Ultra Small Torus 1), is a small R=125mm modular stellarator, funded, designed, built and operated by me during 2005/07 in my own laboratory.

The current **UST_2** project/PhD-thesis is also funded by me and built in my lab., though some means from CIEMAT are utilized. Therefore, the **budget for materials is very low**, **~3-5 k€.**

Introduction

- I will report briefly the current **status** of the UST_2 stellarator.
- The work is R&D and **innovation** in engineering. Not focused on physics and plasma experiments.
- General objectives of the work with UST_2:
- Contribute to my PhD on "Rapid manufacturing methods for geometrically complex nuclear fusion devices".
- Build a small stellarator to prove the results of the R&D.
- Formation.

Decisions to take

Objetives + (cost + schedule) constrains \rightarrow **decisions**

• Technical objectives of UST_2 (and UST_3):

i) Innovative construction methods to lower costs and speed up production cycle. As much as possible ii) turbulence (and neoclassical) optimization and iii) innovative divertor implementation

- Important decisions have to be taken at the very beginning of the design. Thus, **test and validation** of the dubious (low-cost) concepts is carried out.

Decisions to take

- A) What magnetic configuration to use?
- B) Size of the device
- C) Coils inside/outside the VV?

D) Method to build: the coils, the coil frame, the VV

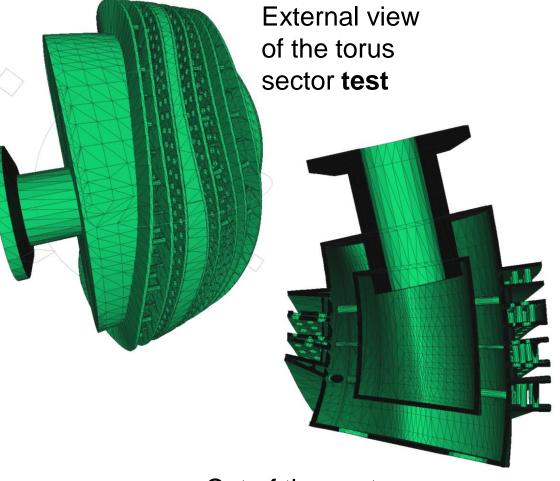
E) Material for the coil frame

R&D carried out to support the decisions

Experimental validation and assessment of the concepts have been produced

• Experimental tests of pieces have been produced to early detect insurmountable problems of the concepts and to roughly estimate the cost of the device.

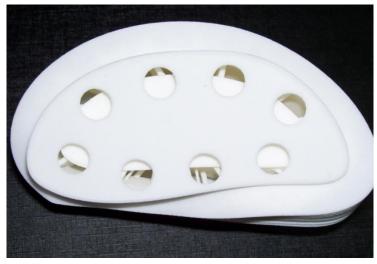
 Theoretical assessment of several different magnetic configurations has been produced by preliminary engineering designs and observation of advantages/drawbacks of each design for UST_2.


Experimental validation of engineering concepts

1st test, a scaled-down 3D printed sector of coil frame

The concept of Hollow-Sparse pieces is developed

- The concept of *Hollow-Sparse* pieces was concocted: 3D printed pieces, very hollow and light, finally filled with a material able to solidify (resin, plaster, etc, fibre reinforced or not).


- The 3D printed pieces cost about 1-2 € /cm³, very expensive. Cost has to be reduced to allow affordable or low-cost devices.

Cut of the sector

1st test, a scaled-down 3D printed sector of coil frame

Results: robust, accurate but too expensive

3D printed piece. Nylon. 80 €

It has been filled with dental plaster and with molten Bi-Sn alloy

Status of UST_2 construction

Vicente Queral

2nd tests, low-cost coil metal casting

Results : Inconclusive. Casting not chosen as reference

- The coils, the coil frame, the VV or all, might be casted.
- Metal casting tend to be expensive for few units.
- For small series (<10 units) sand casting (**non-permanent mould**) is the most common and cheaper.
- About 20-40 k€ may be
 estimated for 20 coils of the size
 of UST_2 (~3-fold the photo).

~100 mm

Lost wax vacuum casting in plaster mould produced in a specialised company. Silver.

~ 1000 € in Ag. ~ 700 € in Cu

2nd tests, low-cost coil metal casting

Permanent plaster mould test

- The aim would be to create **permanent plaster moulds** for 5-10 pieces of AI or Cu coils (usually imposible).

- The cost would be reduced 5-10 fold since several coils are identical.

Own test of casting in a "**permanent**" plaster mould. The mould **broke**. However, **some ideas appeared** to allow permanent plaster moulds for Al

3rd, a UST_2-size 3D printed sector of coil frame

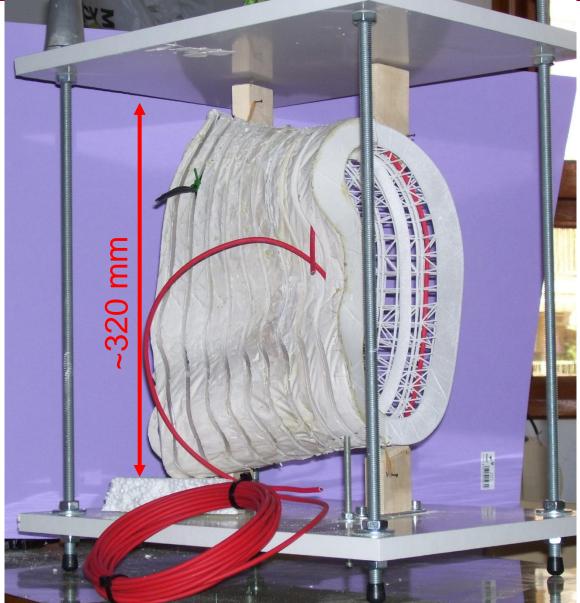
Results : Low cost (200 €), enough strength

3D printed pieces, Nylon. From company 'Shapeways'. **Hollow-Sparse** concept before moulding with filler

Vicente Queral

3rd, a UST_2-size 3D printed sector of coil frame

Results : Still difficult moulding and pair matching



Status of UST_2 construction

3rd, a UST_2-size 3D printed sector of coil frame

Two views of the test of a coil frame sector

Status of UST_2 construction

Assessment of different alternatives

Introduction

 The aim is to use as much as possible the current physics designs,

however:

- It has to be decided what device to build.
- Coil designed for other devices (i.e. QPS) hardly match the needs.
- Many times only the LCFS is available.
- Therefore some calculations are performed.

- The CASTELL code (formerly named SimPIMF), a Java code developed by me during several years, is used for most of the calculations.
- VMEC, DESCUR and NESCOIL are used for the generation of coils and some plasma and winding surfaces, and other.

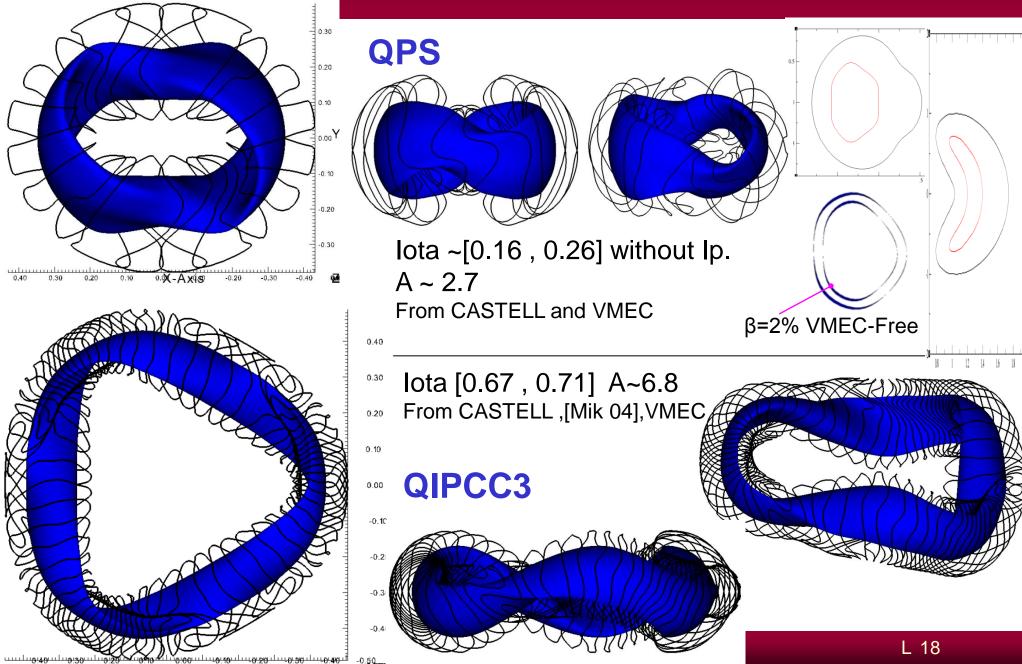
Reference magnetic configuration

The current reference configuration is a QIPCC of 3 periods

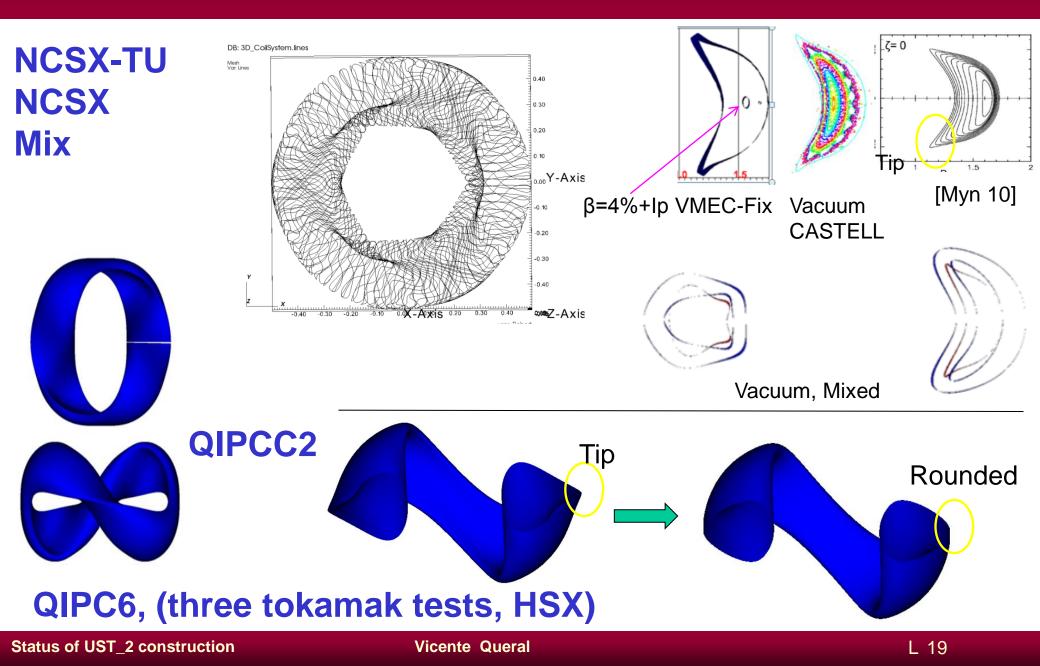
Only the magnetic configurations already developed by physicists and received from the authors are considered: Aries-CS, HSR-3, HSR-4, NCSX-TU, QPS, QIPCC 2P 3P and 6P

> Cross sections of the plasma and winding surface

0.8 m


Status of UST_2 construction

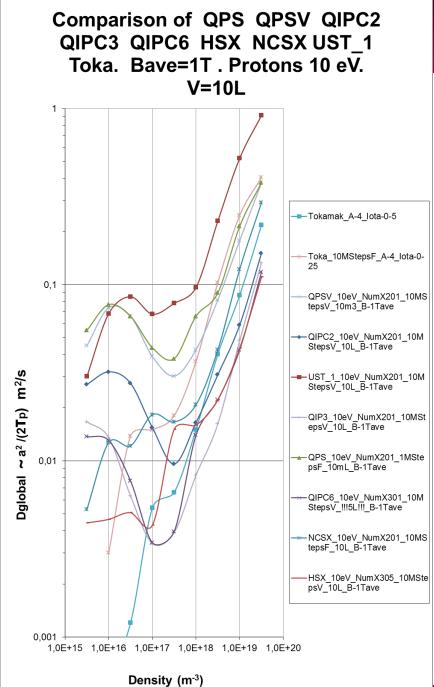
Last closed flux surface


Vicente Queral

Winding surface

Several devices have been assessed

Several devices have been assessed


Several devices assessed

Thinking both in UST_2 size and reactor. Difficult balance of:

- Neoclassical confinement (~iota...).
- Expected turbulent confinement.
- Alpha particle confinement.
- Middle compactness (~inboard blanket).
- Simple control (~↓currents,↓shift, …).
- Reasonable coil shape and space.
- LCFS tips ~ cost ~ performance.
- Cost.

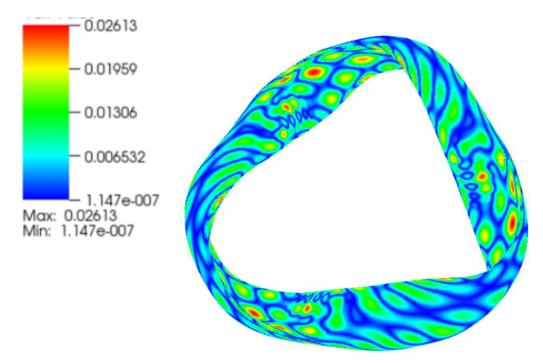
Neoclassical transport estimation/comparison of possible devices for UST_2.

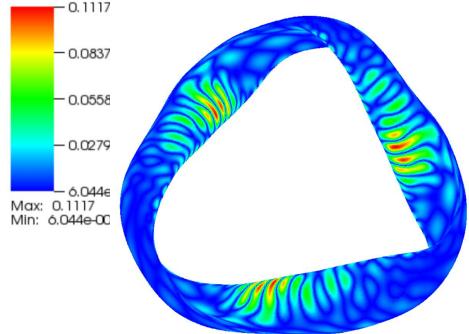
From CASTELL. Tp = particle conf. time. $E_r=0$

Vicente Queral

1st test. Generation of the original magnetic surf.

using 180 and 72 coils='pancakes' for QIP3 0.8 5/7? = 0.7140.75 9/13? = 0.692 0.7 0,65 0.6 0,55 0.5 0,35 0,36 0,37 0,32 0,33 0,34 0.31 R (m) Iota profile from CASTELL Magnetic surfaces for QIP3 at $\phi = 0$. LCFS in solid red

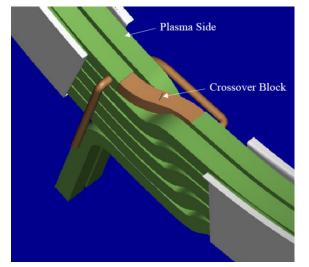

Result: Satisfactory reconstruction of surfaces


lota = [0.67, 0.71] from [Mik 04]

Vicente Queral

2nd test. Balance number of coils ~ modular ripple

Result: ~72 'coils'=pancakes selected as starting point


Error of $B \cdot n$ (per unit) on the magnetic surface for **180 coils** (almost perfect). QIPCC configuration N_p=3

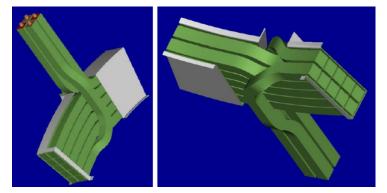
Ave. error: 0.70% Maximum error: 2.6 % **72 coils** (real alternative). QIPCC3. *'Modular error*' is observed.

Ave. error: 1.36% >~ 1% [Min 00] Maximum error: 11 %

3rd test. Magnetic errors due to crossovers

Result : 'Symmetrised' crossovers produce acceptable errors

Mesh DB: 3D_CoilSystem_Perturb.txt Cycle: 0 Var. points


Mesh DB: 3D_CoilSystem.txt Cycle: 0 Var: points

Pseudocolor DB: PerturbationOfMagGridBModule.pt3 Cycle: 0 Var: Value 4.278e-005

— 2.142e-005

1.074e-005

- 6.509e-008 Max: 4.278e-005 Min: 6.509e-008

Two Types of crossovers. Source of figures [NCS 98] Magnetic 'symmetric' perturbation on the LCFS, 3.5mm length and parallel at 3.5mm distance, opposite currents. Scale in T, Bo =1T. QPS-(UST_2 Size)

Status of UST_2 construction

Vicente Queral

L 23

Current reference design and future work

Decisions taken

Objetives + cost+schedule constrains \rightarrow **decisions**

Decisions to take	Comments	Present reference
A) What magnetic configuration to chose?	Middle compactness, LCFS unchanged for any size, low turbulence potential, design available now,	QIPCC 3P is the reference candidate
B) Size	A cost-reasonable size	$Vp = \sim 10$ Litres
C) Coils inside/outside the VV?	If inside: Coil frame material limitations or perfect coil closure required	Outside (likely)
D) Method to build: the coils, the coil frame	3D printing, metal casting, moulding, milling, mix?	3D printing + moulding

Present status

X

X

Initial tests performed Decision of device to build Conceptual design Detailed design

Construction

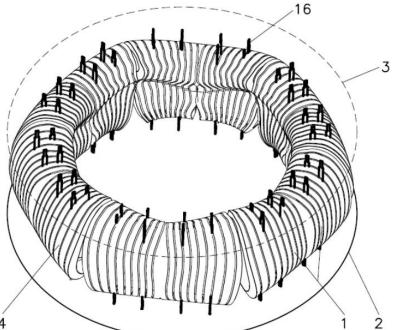
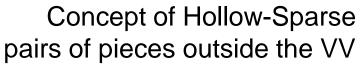
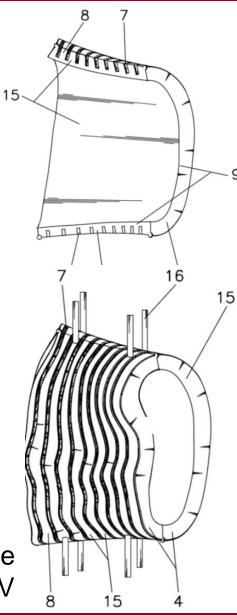




Figure depicting the assembling concepts (nonstellarator symmetry in this figure)

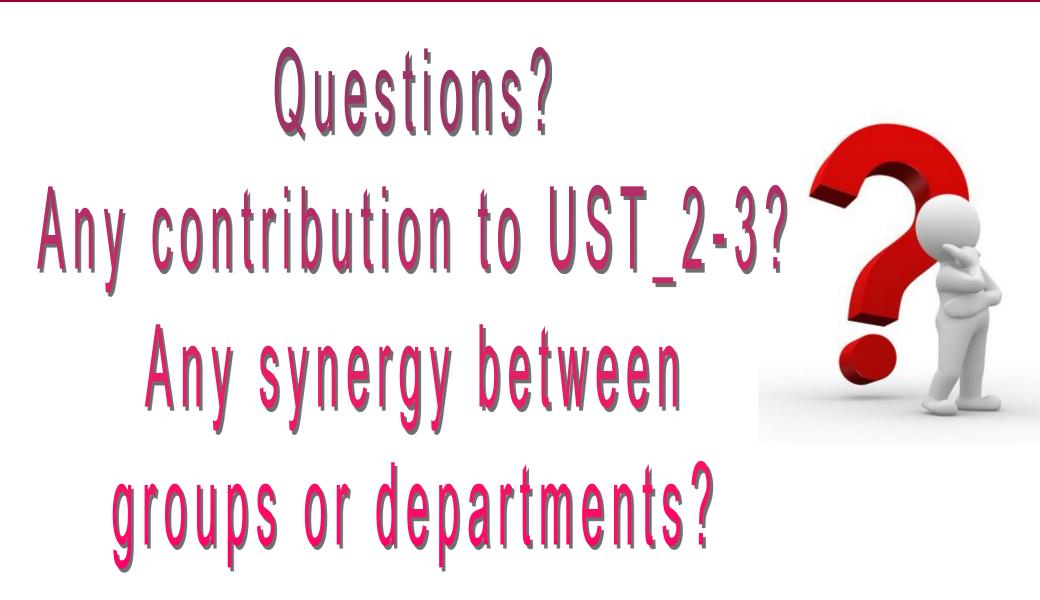
Status of UST_2 construction

Vicente Queral

L 26

Future work

Short term : ~ 3-4 months


- Finish the engineering design.
- Try to rise funds in Kickstarter (contributions are welcomed!).
- Build UST_2 (independently if funds are raised or not).

Middle term: ~ 1 year (UST_3)

Design and raise interest and funds in CIEMAT, in any institution in Spain or in anyplace, in a **low-cost** device, likely a stellarator, of :

- **0.1 m³** plasma volume.
- B_o =~ **0.5 T** (1 T).

- **Turbulence improved (you are invited to contribute**!) device with innovative **power extraction** (divertor or other?).

Any interest on me for something similar to this in LNF?

I would like to give thanks to **all** the people and researchers helping in the development, in particular:

Jefrey Harris and team (ORNL, QPS LCFS and coils) Juergen Nueremberg and team (IPP Max-Planck, QIPCCs LCFS) H. E. Mynick (PPPL, NCSX-TU LCFS) Jesús Romero (NESCOIL teaching, other) Antonio Lopez-Fraguas (DESCUR code) Gerardo Veredas (CAD) Juan A. Jiménez (VMEC teaching) Víctor Tribaldos (stellarators) Jose A. Ferreira (vacuum) Cristobal Bellés (I. T. help) Other

References

[Mik 04] "Comparison of the properties of Quasi-isodynamic configurations for Different Number of Periods", M. J. Mikhailov et al., 31st EPS Conference on Plasma Phys. London, 28 June - 2 July 2004 ECA Vol.28G, P-4.166 (2004)

[Min 00] "Use of a Genetic Algorithm for Compact Stellarator Coil Design" William H. Miner et al., Dec 2000

[Myn 10] "Reducing turbulent transport in toroidal configurations via shaping" H. E. Mynick et al., PHYSICS OF PLASMAS 18, 056101 (2011), December 2010

[NCS 98] "Status of Non-Axisymmetric Coils Study". Presentation for NCSX Project Workshop, 23-25 September 1998

UYING Fusion Energy

Status of UST_2 construction

Extra slides

Matters for discussion and future

We could talk about many other matters, i.e.:

- Why QIPCC3 and not QIPPC6 or QIPPC2 or NCSX-TU or ...?.
- VV construction method (still not clear for low cost).
- Why such winding surface and not others?.
- Bo, Te, n, neoclassical transport and other physics parameters.
- Stress on coil frame and limit of Bo for certain materials.
- Why 3D printing+moulding and not casting or milling or ...?.
- Material for the frame: Metal, plastic, resin, plaster, concrete, ceramics?.
- Many others.

but, better when the development will be more advanced